题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个 $8 \times 8$ 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由 $N \times M$ 个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数 $N$ 和 $M$,分别表示矩形纸片的长和宽。接下来的 $N$ 行包含一个 $N \times M$ 的 $01$ 矩阵,表示这张矩形纸片的颜色( $0$ 表示白色,$1$ 表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
输入样例
3 3
1 0 1
0 1 0
1 0 0
输出样例
4
6
说明
对于 $20\%$ 的数据,$N,M≤80$
对于 $40\%$ 的数据,$N, M ≤ 400$
对于 $100\%$ 的数据,$N, M ≤ 2000$
思路
标准悬线法,详见上一篇博客【学习笔记】最大子矩形问题
代码
1 |
|